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Abstract: In the presence of cases of COVID-19 reinfection, we propose a SIRI (Susceptible-Infected-Recovery-Infected) spread model of 
two COVID-19 variants. This model considers the possibility of individuals becoming reinfected with the same or different variants, 
although the risk of reinfection with the same variant remains lower due to natural immunity from previous infections. Besides analyzing 
the stability of equilibrium points, we focus on codimension-one bifurcations. Our initial numerical simulations used parameters obtained 
from real data collected through a British government survey. Our analysis revealed unstable disease-free equilibria and stable endemic 
equilibria. By varying the Case Fatality Rate parameter, we identified all codimension-one bifurcations. To further investigate the model's 
dynamics, we introduced a new parameter, the reinfection rate, and utilized AUTO software. Our research led to the discovery of 
codimension-two bifurcations, specifically the Bogdanov-Takens bifurcation. We identified the parameter domain where a stable limit 
cycle and homoclinic orbit occur in the presence of the Bogdanov-Takens bifurcation. We also simulated parameter variations that could 
trigger a pandemic resurgence. This highlights the possibility of emerging variants causing a pandemic return. 
 
Keywords: SIRI, reinfection, COVID-19, codimension one bifurcation, Bogdanov-Takens bifurcation. 

 
1. Introduction 

Since December 2019, the Coronavirus Disease 2019, commonly known as COVID-19, has been spreading and affecting the world. The origin 
of COVID-19 is believed to be in a seafood market in Wuhan, China. The World Health Organization (WHO) declared COVID-19 a pandemic 
on March 11, 2020, and there have been over 770 million reported cases of COVID-19, resulting in over 6.9 million deaths (WHO, 2023). 
Recently, in August 2023, there were reports of over 1.4 million new COVID-19 cases and 1,800 fatalities. The four major variants of COVID-
19 are Alpha, Beta, Delta, and Omicron. Omicron has subvariants such as XBB and Eris, which are still considered "Variants of Interest" 
because of their high transmission potential. The WHO designates these variants as VOI to monitor their spread. A new highly mutated 
variant named Pirola has been detected in the UK (Yale, 2023).  

During the Omicron wave, there have been instances of reinfection with the same or different variants. Individuals can contract COVID-19 
multiple times (Pinto et al., 2021; WHO, 2023). COVID-19 sequences by variant and subvariant of Omicron in each country can be viewed on 
(Our World in Data, 2023). On average, there are two predominant variants of the epidemic during a given interval, as shown in Figure 1. For 
example, as of April 12, 2021, the two prevalent varieties were the Alpha and Beta variants. One month later, the two prevalent varieties 
were the Alpha and Delta variants. On December 20, 2021, the two dominant variants were the Delta and Omicron (BA.1) variants. Currently, 
two subvariants of Omicron are predominant.  
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Figure 1. COVID-19 sequences by variant from June 7 in Australia, China, UK, United States, June 7, 2021 until April 26, 2023 (Our World in 
Data, 2023). 
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The complexity of COVID-19's spread is compounded by the 
possibility of reinfection with the same or different virus variants. 
To gain deeper insight into disease spread under these 
circumstances, we propose a SIRI (Susceptible-Infected-Recovery-
Infected) model for two COVID-19 variants. Previous SIRI spread 
model research appears in studies on TBC and herpes disease 
spread models (Sharma et al., 2017), SIRI diffusion models (Yang, 
2019; Duan, 2021), and vaccination strategies (Martins & Pinto, 
2017). Recent SIRI model research on COVID-19 spread is detailed 
in (Nurjanah, 2022), while the discrete model appears in 
(McMahon & Robb, 2020). Studies by (Wangari, 2021) and 
(Salman, 2021) examined COVID-19 reinfection using data from 
Kenya and Malaysia, respectively. Reinfection in COVID-19 
significantly impacts modeling processes. However, these studies 
considered only one disease variant and have not addressed 
multi-strain disease spread models. Our paper examines how 
public awareness affects COVID-19 spread, considering same-
strain reinfection possibilities. The study analyzes the virus's 
multi-strain spread model, helping policymakers and healthcare 

professionals understand public awareness's role in reducing 
COVID-19 transmission. 

This research develops from studies examining COVID-19 spread 
models with saturation. A discrete version appears in (Yong et al., 
2022a), and proposed government policy design appears in (Yong 
et al., 2022b). Codimension 1 bifurcation analysis and 
interpretation appear in (Yong et al., 2022a). The study uses 
public awareness level as its bifurcation parameter. From basic 
reproduction numbers, we analyze disease-free equilibria point 
stability. We derive endemic equilibrium points and analyze their 
bifurcations. The first numerical simulation uses parameters from 
British government survey data (ONS, 2023) in Table 1. These data 
indicate that recovered individuals cannot experience reinfection 
from previous variants. Consequently, our model assumes 
reinfection occurs only with the same variant or new variants. 
Beyond real-data parameters, we simulate parameter variations 
that could trigger pandemic resurgence, representing potential 
scenarios if new variants emerge. 

 
 

Table 1.  Percentage of first and second infections by period in which different variants were dominant, UK, 2 July 2020 to 23 November 
2022 (ONS, 2023) 

First infection variant Second infection variant Estimated percentage (%) of total reinfection 
Alpha Alpha 1.1 
Alpha Delta 4.4 
Alpha Omicron BA.1 9.9 
Alpha Omicron BA.2 10.6 
Alpha Omicron BA.4/BA.5 9.5 
Delta Delta 0.6 
Delta Omicron BA.1 8.2 
Delta Omicron BA.2 11.5 
Delta Omicron BA.4/BA.5 12.9 
Omicron BA.1 Omicron BA.1 0.3 
Omicron BA.1 Omicron BA.2 4.9 
Omicron BA.1 Omicron BA.4/BA.5 16.6 
Omicron BA.2 Omicron BA.2 0.3 
Omicron BA.2 Omicron BA.4/BA.5 8.5 
Omicron BA.4/BA.5 Omicron BA.4/BA.5 0.7 

2. Model 
After the recent case of reinfection, we modified the SIRS model 

to use the SIRI model due to the multi-strain variant we work with. 
This model allows individuals with recovery to become infected 
with the same or a different variant. We constructed our model 
based on the following assumptions, see Figure 2. 

We denoted two main variants of COVID-19, i.e., 𝑖𝑖 = 1 for the 
past variant and 𝑖𝑖 = 2 for the new or current variant (including all 
of the subvariants). Let  𝑆𝑆 = 𝑆𝑆(𝑡𝑡),  𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑖𝑖(𝑡𝑡), and  𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖(𝑡𝑡) 
respectively, the number of susceptible individuals, infected by 𝑖𝑖-
variant individuals, and recovered individuals at time  𝑡𝑡 ≥ 0.  

We excluded the exposed individual because, according to the 
European Centre for Disease Prevention and Control, the 
incubation time for the new variant is shorter (3-4 days). 

The recruitment of individuals due to births and migrations is 
constant, Λ and also proportional to the number of recovery 

individuals:  𝜆𝜆(𝑅𝑅1 + 𝑅𝑅2) for Λ, 𝜆𝜆 > 0, and they assumed as 
susceptible individuals. 

The incidence rate is proportional to the possible contacts 
between susceptible individuals and infected individuals and has 
a denominator which increases with 𝑆𝑆.  The parameter 𝛾𝛾1  
measuring  the level of a susceptible’s cautiousness. So we have 

the incidence rate: β𝑖𝑖𝑆𝑆𝐼𝐼𝑖𝑖
1+γ1𝑆𝑆

   for some β𝑖𝑖 > 0. 

Infected individuals 𝐼𝐼𝑖𝑖 become recovered 𝑅𝑅𝑖𝑖  at the rate μ𝑖𝑖 > 0. 
The proportions of each individual leaving the population as a 

result of deaths are proportional to the mortality rate 𝛿𝛿 >  0.  
Infected individuals die at a greater rate than susceptible and 
recovered individuals, so we add the Case Fatality Rate (CFR) of 
each variant, 𝛿𝛿𝑖𝑖. 

Recovery individuals 𝑅𝑅1 can be reinfected with the same variant 
with rate α11 or by new variant with rate 𝛼𝛼12. Recovery individuals  
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𝑅𝑅2 only reinfected with the same variant with rate 𝛼𝛼22 and cannot 
be reinfected by the old variant, see Table 1.  This incidence rate 
is proportional to the possible contacts of recovery and infected 
individuals and also the reinfection rate from 𝑖𝑖 variant to 𝑗𝑗  

variant, 𝑖𝑖, 𝑗𝑗 = 1, 2.  The level of recovery’s cautiousness is 
assumed to be less than or equal to the level of susceptible’s one, 

γ2 ≤ γ1, thus we have the incidence rate: 
α𝑖𝑖𝑖𝑖β𝑖𝑖𝑅𝑅𝑖𝑖𝐼𝐼𝑖𝑖
1+γ2𝑅𝑅𝑖𝑖

 for some 𝑖𝑖, 𝑗𝑗 =

1,2, 𝑖𝑖 ≤ 𝑗𝑗.  
 

 

 
Figure 2.  Transmission diagram of COVID-19 

 
Table 2.  The model parameters with their biological meanings 

Parameters Biological meanings Estimated values  Sources 
α𝑖𝑖𝑖𝑖 Reinfection rate from 𝑖𝑖 to 𝑗𝑗 variant, 𝑖𝑖 ≤ 𝑗𝑗, (0.01,0.35) (ONS, 2023) 
β𝑖𝑖 Transmission coefficient from susceptible to infected 

individuals with 𝑖𝑖 variant. 
(0.58,0.95) (Ndairou et al., 2020) 

δ Mortality rate 0.002 (Ud Din et al., 2020) 
𝛿𝛿𝑖𝑖 Case Fatality Rate (CFR) 𝑖𝑖 variant (0.01,0.05) (Ndairou et al., 2020) 
Λ Recruitment of susceptible individuals (birth rate, etc.) 10000

59 × 365 (Agusto, 2013) 

λ Birth rate of recovery individual  (0.01, 0.2) (Ud Din et al., 2020) 
𝜇𝜇𝑖𝑖 Recovery rate of 𝑖𝑖 variant (0.5, 0,8) (Ndairou et al., 2020) 
γ1 The susceptible individual's cautiousness level (0.3,0.8) (Yong et al., 2022b) 
γ2 The recovery individual's cautiousness level, γ2 < γ1 (0.3,0.8) (Yong et al., 2022b) 

 
The above assumptions lead to the following model: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡 = Λ + λ(𝑅𝑅1 + 𝑅𝑅2) − 𝛿𝛿𝑆𝑆 −

𝛽𝛽1𝑆𝑆𝐼𝐼1
1 + 𝛾𝛾1𝑆𝑆

−
𝛽𝛽2𝑆𝑆𝐼𝐼2

1 + 𝛾𝛾1𝑆𝑆
,

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡 =

𝛽𝛽1𝑆𝑆𝐼𝐼1
1 + 𝛾𝛾1𝑆𝑆

− 𝛿𝛿𝐼𝐼1 − 𝛿𝛿1𝐼𝐼1 − 𝜇𝜇1𝐼𝐼1 +
𝛼𝛼11𝛽𝛽1𝐼𝐼1𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

,

𝑑𝑑𝐼𝐼2
𝑑𝑑𝑡𝑡 =

𝛽𝛽2𝑆𝑆𝐼𝐼2
1 + 𝛾𝛾1𝑆𝑆

− 𝛿𝛿𝐼𝐼2 − 𝛿𝛿2𝐼𝐼2 − 𝜇𝜇2𝐼𝐼2 +
𝛼𝛼22𝛽𝛽2𝐼𝐼2𝑅𝑅2
1 + 𝛾𝛾2𝑅𝑅2

+
𝛼𝛼12𝛽𝛽2𝐼𝐼2𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

,

𝑑𝑑𝑅𝑅1
𝑑𝑑𝑡𝑡 = 𝜇𝜇1𝐼𝐼1 − 𝛿𝛿𝑅𝑅1 −

𝛼𝛼11𝛽𝛽1𝐼𝐼1𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

−
𝛼𝛼12𝛽𝛽2𝐼𝐼2𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

,

𝑑𝑑𝑅𝑅2
𝑑𝑑𝑡𝑡 = 𝜇𝜇2𝐼𝐼2 − 𝛿𝛿𝑅𝑅2 −

𝛼𝛼22𝛽𝛽2𝐼𝐼2𝑅𝑅2
1 + 𝛾𝛾2𝑅𝑅2

,

 (1) 
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3. Results and Discussion 
Firstly, we applied the following proposition regarding the System’s positiveness solution. 
 
Proposition 1.  (The System’s positiveness solution.)  Let the initial conditions:  𝑆𝑆(0), 𝐼𝐼𝑖𝑖(0),𝑅𝑅𝑖𝑖(0) ≥ 0, 𝑖𝑖, 𝑗𝑗 =  1, 2,  then  the  solutions  
𝑆𝑆(𝑡𝑡), 𝐼𝐼𝑖𝑖(𝑡𝑡),𝑅𝑅𝑖𝑖(𝑡𝑡), 𝑖𝑖, 𝑗𝑗 =  1, 2  of  system  (1)  are  non- negative for 𝑡𝑡 ≥  0.  

 

Proof 1.  Rewrite the right hand side of  d𝐼𝐼1
d𝑡𝑡

 and d𝐼𝐼2
d𝑡𝑡

 on System (1) as 
𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡 = 𝐼𝐼1 �

𝛽𝛽1𝑆𝑆
1 + 𝛾𝛾1𝑆𝑆

− 𝛿𝛿 − 𝛿𝛿1 − 𝜇𝜇1 +
𝛼𝛼11𝛽𝛽1𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

� ,

𝑑𝑑𝐼𝐼2
𝑑𝑑𝑡𝑡 = 𝐼𝐼2 �

𝛽𝛽2𝑆𝑆
1 + 𝛾𝛾1𝑆𝑆

− 𝛿𝛿 − 𝛿𝛿2 − 𝜇𝜇2 +
𝛼𝛼22𝛽𝛽2𝑅𝑅2
1 + 𝛾𝛾2𝑅𝑅2

+
𝛼𝛼12𝛽𝛽2𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

� .
  

Both planes 𝐼𝐼1 = 0 and 𝐼𝐼2 = 0 are invariant manifolds since it imply d𝐼𝐼1
d𝑡𝑡

= 0 and d𝐼𝐼2
d𝑡𝑡

= 0.  

 

Since 𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡
�
𝑆𝑆=0,𝐼𝐼1,𝐼𝐼2,𝑅𝑅1,𝑅𝑅2≥0

= 𝛬𝛬 + 𝜆𝜆(𝑅𝑅1 + 𝑅𝑅2), 𝑑𝑑𝑅𝑅1
𝑑𝑑𝑡𝑡
�
𝑅𝑅1=0,𝑆𝑆,𝐼𝐼1,𝐼𝐼2,𝑅𝑅2≥0

= 𝜇𝜇1𝐼𝐼1, 𝑑𝑑𝑅𝑅2
𝑑𝑑𝑡𝑡
�
𝑅𝑅2=0,𝑆𝑆,𝐼𝐼1,𝐼𝐼2,𝑅𝑅1≥0

= 𝜇𝜇2𝐼𝐼2, the rates listed above are all non-negative 

over their ℝ+
𝟝𝟝  boundary planes. As a result, we have the vector fields intended inward direction from their boundaries. Starting with non-

negative initial conditions so that all of the System's solutions (1) remain positive for all 𝑡𝑡 ≥ 0. ■ 
 
The Basic Reproduction Number and The Stability of the Disease-Free Equilibrium 

The disease-free equilibrium is 𝐸𝐸0 = �Λ
δ

, 0,0,0,0� and the linearized vector field of (1) in the vicinity of 𝐸𝐸0 is 

⎝

⎜
⎜
⎜
⎜
⎜
⎛
−𝛿𝛿 −

𝛽𝛽1Λ
𝛾𝛾1Λ + 𝛿𝛿 −

𝛽𝛽2Λ
𝛾𝛾1Λ + 𝛿𝛿 𝜆𝜆 𝜆𝜆

0 −𝛿𝛿 − 𝛿𝛿1 − 𝜇𝜇1 +
𝛽𝛽1Λ

𝛾𝛾1Λ + 𝛿𝛿 0 0 0

0 0 −𝛿𝛿 − 𝛿𝛿2 − 𝜇𝜇2 +
𝛽𝛽2Λ

𝛾𝛾1Λ + 𝛿𝛿 0 0

0 𝜇𝜇1 0 −𝛿𝛿 0
0 0 𝜇𝜇2 0 −𝛿𝛿⎠

⎟
⎟
⎟
⎟
⎟
⎞

 (2) 

The eigenvalues of (2) are  

−𝛿𝛿,−𝛿𝛿,−𝛿𝛿,
𝛽𝛽1Λ

𝛾𝛾1Λ + 𝛿𝛿 −
(𝛿𝛿 + 𝛿𝛿1 + 𝜇𝜇1),

𝛽𝛽2Λ
𝛾𝛾1Λ + 𝛿𝛿 −

(𝛿𝛿 + 𝛿𝛿2 + 𝜇𝜇2) (3) 

We determine the basic reproduction number, ℛ0, by using the next generation method (Driessche, 2017), i.e.  
ℛ0 = max(ℛ01,ℛ02) (4) 

where 

ℛ01 =
𝛽𝛽1Λ

(𝛾𝛾1Λ + 𝛿𝛿)(𝛿𝛿 + 𝛿𝛿1 + 𝜇𝜇1) ,ℛ02 =
𝛽𝛽2Λ

(𝛾𝛾1Λ + 𝛿𝛿)(𝛿𝛿 + 𝛿𝛿2 + 𝜇𝜇2). 

Equation (3) is rewritten as 
−𝛿𝛿,−𝛿𝛿,−𝛿𝛿,ℛ01 − 1,ℛ02 − 1 (5) 

We conclude the following proposition for the stability of disease-free equilibrium. 
 

Proposition 2.  (The stability of disease-free equilibrium.) The disease-free equilibrium is 𝐸𝐸0 = �Λ
δ

, 0,0,0,0� is a stable node if ℛ0 < 1 and 

it is a saddle point if ℛ0 > 1.  
For condition ℛ0 = 1 will be discuss in section 3.4. 
 
One Variant Exists 
Assume 𝐼𝐼2,𝑅𝑅2 ≠ 0. The condition 𝐼𝐼1 = 0 implies 𝑅𝑅1 = 0, the dynamic of the System (1) follows the subsystem  

𝑑𝑑S
𝑑𝑑𝑡𝑡 = 𝛬𝛬 + 𝜆𝜆𝑅𝑅2 − 𝑆𝑆 �𝛿𝛿 +

𝛽𝛽2𝐼𝐼2
1 + 𝛾𝛾1𝑆𝑆

� ,

𝑑𝑑𝐼𝐼2
𝑑𝑑𝑡𝑡 =

𝛽𝛽2𝑆𝑆
1 + 𝛾𝛾1𝑆𝑆

− 𝛿𝛿 − 𝛿𝛿2 − 𝜇𝜇2 +
𝛼𝛼22𝛽𝛽2𝑅𝑅2
1 + 𝛾𝛾2𝑅𝑅2

,

𝑑𝑑𝑅𝑅2
𝑑𝑑𝑡𝑡 = 𝜇𝜇2𝐼𝐼2 − 𝑅𝑅2 �𝛿𝛿 +

𝛼𝛼22𝛽𝛽2𝐼𝐼2
1 + 𝛾𝛾2𝑅𝑅2

� .

 (6) 
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We get an equilibrium 𝐸𝐸2 = (𝑆𝑆2, 0, 𝐼𝐼22, 0,𝑅𝑅22) whose the 𝑅𝑅22-component satisfies: 
𝑎𝑎3(𝑅𝑅22)3  + 𝑎𝑎2(𝑅𝑅22)2 + 𝑎𝑎1𝑅𝑅22 + 𝑎𝑎0 = 0 (7) 

where  
𝑘𝑘 = 𝛿𝛿 + 𝛿𝛿2 + 𝜇𝜇2 
𝑎𝑎3 = (𝛼𝛼22𝛽𝛽2𝛾𝛾1 − 𝛾𝛾1𝛾𝛾2𝑘𝑘 + 𝛽𝛽2𝛾𝛾2)(𝛼𝛼22𝛽𝛽2(𝜆𝜆 − 𝛿𝛿) + 𝛿𝛿𝛾𝛾2𝑘𝑘 − 𝛾𝛾2𝜆𝜆𝜇𝜇2) 
𝑎𝑎2 = (𝛼𝛼22𝛽𝛽2)2(Λ𝛾𝛾1 + 𝛿𝛿) + (𝛼𝛼22𝛽𝛽2)((2𝛿𝛿𝑘𝑘 − Λ(𝑘𝑘 + 𝜇𝜇2)𝛾𝛾2 − 𝜆𝜆(𝑘𝑘 + 𝜇𝜇2))𝛾𝛾1 + 

(Λ𝛽𝛽2 − 𝛿𝛿(𝑘𝑘 + 𝜇𝜇2))𝛾𝛾2 − 𝛽𝛽2(𝛿𝛿 − 𝜆𝜆)) + 𝛾𝛾2(((Λ𝛾𝛾2 + 2𝜆𝜆)𝛾𝛾1 + 𝛿𝛿𝛾𝛾2)𝑘𝑘 − 𝛽𝛽2(Λ𝛾𝛾2 + 2𝜆𝜆))𝜇𝜇2 − 2𝑘𝑘𝛿𝛿(𝛾𝛾1𝑘𝑘 − 𝛽𝛽2) 
𝑎𝑎1 = −𝛼𝛼22𝛽𝛽2 ��(𝑘𝑘 + 𝜇𝜇2)𝛾𝛾1 − 𝛽𝛽2�Λ + 𝛿𝛿(𝑘𝑘 + 𝜇𝜇2)� + ��(2Λ𝛾𝛾2 + 𝜆𝜆)𝛾𝛾1 + 2𝛿𝛿𝛾𝛾2�𝑘𝑘 − (2Λ𝛾𝛾2 + 𝜆𝜆)𝛽𝛽2� 𝜇𝜇2 − 𝑘𝑘𝛿𝛿(𝛾𝛾1𝑘𝑘 − 𝛽𝛽2) 
𝑎𝑎0 = 𝜇𝜇2(Λ𝛾𝛾1𝑘𝑘 + 𝛿𝛿𝑘𝑘 − Λ𝛽𝛽2) 

and 

𝑆𝑆2 =
(𝛿𝛿 + 𝛿𝛿2 + 𝜇𝜇2)(𝛾𝛾2𝑅𝑅22 + 1) − 𝛼𝛼22𝛽𝛽2𝑅𝑅22

(𝛾𝛾2𝑅𝑅22 + 1)(𝛽𝛽2 − 𝛾𝛾1(𝛿𝛿 + 𝛿𝛿2 + 𝜇𝜇2) + 𝛼𝛼22𝛽𝛽2𝛾𝛾1𝑅𝑅22)

𝐼𝐼22 =
𝛿𝛿𝑅𝑅22(𝛾𝛾2𝑅𝑅22 + 1)

𝜇𝜇2 + 𝜇𝜇2𝛾𝛾2𝑅𝑅22 − 𝛼𝛼22𝛽𝛽2𝑅𝑅22

 

 
With a similar analysis, assume 𝐼𝐼1,𝑅𝑅1 ≠ 0. The condition 𝐼𝐼2 = 0 implies 𝑅𝑅2 = 0, we get an equlibrium 𝐸𝐸1 = (𝑆𝑆1, 𝐼𝐼11, 0,𝑅𝑅11, 0) and the 

expression for 𝑆𝑆1, 𝐼𝐼11,𝑅𝑅11 is similar with 𝑆𝑆2, 𝐼𝐼22,𝑅𝑅22 by replacing α22, β2, δ2, μ2 with α11, β1, δ1, μ1. 
 
Two Variant Exist 
The double endemic equilibrium 𝐸𝐸� = (𝑆𝑆̅, 𝐼𝐼1� , 𝐼𝐼2� ,𝑅𝑅1���,𝑅𝑅2���) exist if 

Λ + 𝜆𝜆�𝑅𝑅1 + 𝑅𝑅2� − 𝑆𝑆 �𝛿𝛿 +
𝛽𝛽1𝐼𝐼1

1 + 𝛾𝛾1𝑆𝑆
+

𝛽𝛽2𝐼𝐼2
1 + 𝛾𝛾1𝑆𝑆

� = 0,

𝛽𝛽1𝑆𝑆
1 + 𝛾𝛾1𝑆𝑆

− 𝛿𝛿 − 𝛿𝛿1 − 𝜇𝜇1 +
𝛼𝛼11𝛽𝛽1𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

= 0,

𝛽𝛽2𝑆𝑆
1 + 𝛾𝛾1𝑆𝑆

− 𝛿𝛿 − 𝛿𝛿2 − 𝜇𝜇2 +
𝛼𝛼22𝛽𝛽2𝑅𝑅2
1 + 𝛾𝛾2𝑅𝑅2

+
𝛼𝛼12𝛽𝛽2𝑅𝑅1
1 + 𝛾𝛾2𝑅𝑅1

= 0,

𝜇𝜇1𝐼𝐼1 − 𝑅𝑅1 �𝛿𝛿 +
𝛼𝛼11𝛽𝛽1𝐼𝐼1

1 + 𝛾𝛾2𝑅𝑅1
+
𝛼𝛼12𝛽𝛽2𝐼𝐼2

1 + 𝛾𝛾2𝑅𝑅1
� = 0,

𝜇𝜇2𝐼𝐼2 − 𝑅𝑅2 �𝛿𝛿 +
𝛼𝛼22𝛽𝛽2𝐼𝐼2

1 + 𝛾𝛾2𝑅𝑅2
� = 0.

 

has a solution for 𝑆𝑆̅, 𝐼𝐼1� , 𝐼𝐼2� ,𝑅𝑅1���,𝑅𝑅2��� > 0 or equivalently with  
𝛿𝛿𝛾𝛾1𝑆𝑆2��� + �𝛿𝛿 + 𝛽𝛽1𝐼𝐼1� + 𝛽𝛽2𝐼𝐼2� − 𝛾𝛾1(Λ + 𝜆𝜆𝑅𝑅1��� + 𝜆𝜆𝑅𝑅2���)�𝑆𝑆̅ − (Λ + 𝜆𝜆𝑅𝑅1��� + 𝜆𝜆𝑅𝑅2���) = 0 (8) 

 
Since Λ + λ𝑅𝑅1���+ λ𝑅𝑅2��� > 0, we conclude that only one positive 𝑆𝑆̅ if discriminant of (8) is positive 
 

(𝜆𝜆𝛾𝛾1)2 �𝑅𝑅1
2

+ 𝑅𝑅2
2
� + 2𝜆𝜆𝛾𝛾1(𝛿𝛿 + 𝛾𝛾1𝜆𝜆𝑅𝑅2 + Λ𝛾𝛾1 − 𝛽𝛽1𝐼𝐼1 − 𝛽𝛽2𝐼𝐼2)𝑅𝑅1 + 2𝜆𝜆𝛾𝛾1(𝛿𝛿 + Λ𝛾𝛾1 − 𝛽𝛽1𝐼𝐼1 

−𝛽𝛽2𝐼𝐼2)𝑅𝑅2 + (Λ𝛾𝛾1 + 𝛿𝛿)2 + (𝛽𝛽1𝐼𝐼1 + 𝛽𝛽2𝐼𝐼2)2 + 2𝛽𝛽1𝐼𝐼1(𝛿𝛿 − Λ𝛾𝛾1) + 2𝛽𝛽2𝐼𝐼2(𝛿𝛿 − Λ𝛾𝛾1) > 0 
 
Bifurcation Analysis 

In the following propositions, we analytically demonstrate the conditions that make transcritical or fold bifurcations occur (see Strogatz 
(2018) for the bifurcation theory). 

 

Proposition 3.  (Transcritical bifurcation) At ℛ0𝒾𝒾 = 1 or equivalently with δ𝑖𝑖 = Λβ𝑖𝑖
Λγ1+δ

− δ − μ𝑖𝑖, the equilibria 𝐸𝐸0 and 𝐸𝐸𝑖𝑖 undergo transcritical 

bifurcation.  
 

Proof 3. It is simple to get that  

i) 𝐸𝐸0 and 𝐸𝐸1 collide when δ1 = Λβ1
Λγ1+δ

− δ − μ1 or equivelently with ℛ01 = 1, and 

ii) 𝐸𝐸0 and 𝐸𝐸2 collide when δ1 = Λβ1
Λγ1+δ

− δ − μ1 or equivelently with ℛ02 = 1. 

At the transcritical point, they become degenerate equilibrium with one zero eigenvalue. 
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Proposition 4.  (Fold bifurcation of 𝐸𝐸𝑖𝑖) Let 𝐷𝐷 ≔ 18𝑎𝑎3𝑎𝑎2𝑎𝑎1𝑎𝑎0 − 4𝑎𝑎3𝑎𝑎13 − 4𝑎𝑎23𝑎𝑎0 + 𝑎𝑎22𝑎𝑎12 − 27𝑎𝑎32𝑎𝑎02 = 0 
where 
𝑘𝑘 = 𝛿𝛿 + 𝛿𝛿𝑖𝑖 + 𝜇𝜇𝑖𝑖 
𝑎𝑎3 = (𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾1 − 𝛾𝛾1𝛾𝛾2𝑘𝑘 + 𝛽𝛽𝑖𝑖𝛾𝛾2)(𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖(𝜆𝜆 − 𝛿𝛿) + 𝛿𝛿𝛾𝛾2𝑘𝑘 − 𝛾𝛾2𝜆𝜆𝜇𝜇𝑖𝑖) 
𝑎𝑎2 = (𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖)2(Λ𝛾𝛾1 + 𝛿𝛿) + (𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖)((2𝛿𝛿𝑘𝑘 − Λ(𝑘𝑘 + 𝜇𝜇𝑖𝑖)𝛾𝛾2 − 𝜆𝜆(𝑘𝑘 + 𝜇𝜇𝑖𝑖))𝛾𝛾1 + 
           (Λ𝛽𝛽𝑖𝑖 − 𝛿𝛿(𝑘𝑘 + 𝜇𝜇𝑖𝑖))𝛾𝛾2 − 𝛽𝛽𝑖𝑖(𝛿𝛿 − 𝜆𝜆)) + 𝛾𝛾2(((Λ𝛾𝛾2 + 2𝜆𝜆)𝛾𝛾1 + 𝛿𝛿𝛾𝛾2)𝑘𝑘 − 𝛽𝛽𝑖𝑖(Λ𝛾𝛾2 + 2𝜆𝜆))𝜇𝜇𝑖𝑖 − 2𝑘𝑘𝛿𝛿(𝛾𝛾1𝑘𝑘 − 𝛽𝛽𝑖𝑖) 

𝑎𝑎1 = −𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖 ��(𝑘𝑘 + 𝜇𝜇2)𝛾𝛾1 − 𝛽𝛽𝑖𝑖�Λ + 𝛿𝛿(𝑘𝑘 + 𝜇𝜇𝑖𝑖)� + + ��(2Λ𝛾𝛾2 + 𝜆𝜆)𝛾𝛾1 + 2𝛿𝛿𝛾𝛾2�𝑘𝑘 − (2Λ𝛾𝛾2 + 𝜆𝜆)𝛽𝛽𝑖𝑖� 𝜇𝜇𝑖𝑖 − 𝑘𝑘𝛿𝛿(𝛾𝛾1𝑘𝑘 − 𝛽𝛽𝑖𝑖) 

𝑎𝑎0 =  𝜇𝜇𝑖𝑖(Λ𝛾𝛾1𝑘𝑘 + 𝛿𝛿𝑘𝑘 − Λ𝛽𝛽𝑖𝑖) 
Fold bifurcation of 𝐸𝐸𝑖𝑖 occurs when 𝐷𝐷 = 0. 
 
Proof 4.  Without loss of generality, we prove the fold bifurcation of 𝐸𝐸2. Since 𝑅𝑅𝑖𝑖 is the root of the cubic equation (7), the discriminant of it 

(10) can be computed using the Cardano formula (Wituła & Słota, 2010). If 𝐷𝐷 = 0, then the cubic equation (7) has multiple roots, and all of 
its roots are real. 

 

4. Numerical Simulation 
This section presents the codimension two bifurcation diagram, from which we can show some interesting phase portraits and time series. 

The initial parameters are given in Table 3. We vary the parameters α22 and δ2 to analyze how the new variant impacts the pandemic 
situation. 

Table 3.  The initial parameter set. 
𝛼𝛼11 𝛼𝛼12 𝛼𝛼22 𝛽𝛽1 𝛽𝛽2 𝛿𝛿 𝛿𝛿1 𝛿𝛿2 Λ 𝜆𝜆 𝜇𝜇1 𝜇𝜇2 𝛾𝛾1 𝛾𝛾2 
0.01 0.35 0.24 0.08 0.5 0.0065 0.04 0.02 0.02 0.0125 0.8 0.7 0.1 0.05 

 
We have the saddle point 𝑒𝑒0 = (3.076923077, 0, 0, 0, 0) and the stable node 𝑒𝑒2 = (0.09463959107, 0, 2.520380824, 0, 7.900874864). 

So one variant exists, for the phase portrait (see Figure 4 (Left)). 

  

Figure 4. (Left) Some orbits for the initial parameter set in Table 3 or the A parameter set. (Right) The 𝐼𝐼2-coordinate of the branch of 
continuation equilibrium as variation on parameter 𝛿𝛿2. 

 
Codimension One Bifurcation 
Using the numerical continuation AUTO, we vary δ2 and obtain a transcritical bifurcation point (between 𝑒𝑒0 and 𝑒𝑒2) and a fold (or saddle 

node) bifurcation point for 𝑒𝑒2 (see Table 4). These are the same results with Propositions 3 and 4. 
 

Table 4.  Transcritical and fold bifurcations list. 
Bifurcation Label 𝛅𝛅𝟐𝟐 𝑺𝑺 𝑰𝑰𝟏𝟏 𝑰𝑰𝟐𝟐 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 
Transcritical TR 0.469970711 3.076923077 0 0 0 0 
Fold SN 0.570633209 2.939313201 0 0.014559724 0 1.251406177 

 
Figure 4 (Right) displays the branch of continuation nontrivial equilibrium (red curve), which undergoes a fold bifurcation and a transcritical 

bifurcation with disease-free equilibrium (black line) as a variation on parameter δ2. Their stability alternates from stable (solid style) to 
unstable (dashed style), and vice versa. 
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Codimension Two Bifurcation 
In this section, we add α22 (which is the reinfection rate 

parameter of the new variant) as a new free parameter. We then 
follow the loci of the fold bifurcation and obtain the fold 
bifurcation curve. As we increase α22, we find the Bogdanov-
Takens bifurcation point  

𝐵𝐵𝐵𝐵 ≔ (δ2,α22) = (0.70518678919, 2.0727176300) 
which means there is a Hopf bifurcation near that point. After 

we found one Hopf bifurcation point, we followed its loci and 
obtained the Hopf bifurcation curve. These results are shown  in 
Figure 5 (Left). We give four examples to illustrate the dynamic 
for each region in Figures 4 (Left), 5 (Right), and 6. 

 

 

 

Figure 5. (Left) Two parameter bifurcation diagram of the nontrivial equilibrium of System (1) for 0 ≤ 𝛿𝛿2 ≤ 1,0 ≤ 𝛼𝛼22 ≤ 2.5. (Right) 
Some orbits for the B parameter set. 

The transcritical bifurcation point does not depend on 
parameter α22, since ℛ0 does not either, according to formula 
(4). For δ2 < 0.469970711, for example, in the A parameter 
sets in Figure 4 (Left), we have the disease-free equlibria 𝑒𝑒0, 
which is saddle point typed (magenta cross symbol), and the 
stable focus node 𝑒𝑒2 (blue circle symbol). We have two 
nontrivial equilibriums, 𝑒𝑒1 and 𝑒𝑒2, but 𝑒𝑒1 is negative. By passing 

through the transcritical line, 𝑒𝑒1 becomes positive. Then, 𝑒𝑒0 
and 𝑒𝑒1 switch their stability, so 𝑒𝑒0 becomes stable (magenta star 
symbol), and we obtain the new saddle point 𝑒𝑒1 (Figure 5 
(Right)). These nontrivials become closer (Figure 6 (Left)), 
collide and vanish at the fold bifurcation point. As a result, we 
only have one stable disease-free equilibria 𝑒𝑒0, as in Figure 6 
(Right). 

 

  
Figure 6. Some orbits for the C and D parameter sets. 

We are interested in seeing the dynamics near the Bogdanov-
Takens point and focusing on the nontrivial equilibrium 𝑒𝑒2. We 
present four different topological examples to illustrate the 
dynamics between the C parameter set and the D parameter set 
(see Figures 8 and 9). 

In the previous set of parameters, labeled as the E parameter set 
and illustrated in Figure 8 (Left), 𝑒𝑒2 is a stable focus node (blue 
circle symbol). However, in the F parameter set, the system 
undergoes a homoclinic bifurcation. The solution for some initial 

conditions near the homoclinic orbit (dash-dotted red orbit) will 
have a very large period (see Figure 8 (Right)).  

By increasing δ2, in the G parameter set, the homoclinic orbit 
has shrunk and become an unstable limit cycle (dashed blue 
orbit), as shown in Figure 9 (Left). After passing through the 
subcritical Hopf curve in the H parameter set, the unstable limit 
cycle collides with 𝑒𝑒2, and 𝑒𝑒2 becomes an unstable focus node 
(blue square symbol), as shown in Figure 9 (Right). 
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Figure 7. (Left) Two parameter bifurcation diagram of the nontrivial equilibrium of System (1) near the Bogdanov-Takens bifurcation 

point. (Right) The branch of periodic solution at 𝛼𝛼22 = 2.0735 as variation on parameter 𝛿𝛿2. By numerical observation, the homoclinic 
orbit occurs at 𝛿𝛿2 = 0.70518803536. 

 

  
Figure 8. Some orbits for the E dan F parameter set.  

5. Conclusion Remarks 
We developed a SIRI model to investigate the reinfection rate, 
α22, and Case Fatality Rate, δ2, of a new COVID-19 variant in 
preventing the spread of COVID-19. Our calculations yielded the 
basic reproduction number ℛ0, which revealed a stable disease-
free equilibrium for all parameter values, provided ℛ0 < 1. By 

varying α22 and δ2, we discovered a codimension two bifurcation, 
known as the Bogdanov-Takens bifurcation. Further numerical 
analysis allowed us to gain a better understanding of the behavior 
near this bifurcation point, including the identification of a 
domain of parameters containing a stable limit cycle and a 
homoclinic orbit. 

 

  
Figure 9. Some orbits for the G and H parameter set.  
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Our simulation of parameter sets A, B, C, E, F, and G 

demonstrated the persistence of a COVID-19 variation. We 
examined the manner in which a pandemic could occur based on 
initial conditions, even with a small infected population, in 
addition to analyzing infection and mortality rates. We believe 
that the codimension two bifurcation diagram could provide 
valuable insight into forecasting the impact of any future COVID-
19 variants. 
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