Probing the Rotation Curve of NGC 4501 Galaxy using Two Different Models

Main Article Content

Israa Abdulqasim Mohammed Ali
https://orcid.org/0000-0001-8588-3006
Hareth Saad Mahdi
https://orcid.org/0000-0002-0827-0473
Zamri Zainal Abidin
Danial Ahmad Ariffin Lee
https://orcid.org/0000-0002-6361-8727

Abstract

Rotation curves of spiral galaxies have become an important tool for investigating their physical properties and is usually used as evidence for dark matter presence in their haloes. This research aims to probe the rotation curve of the spiral galaxy NGC 4501. The HI data of this galaxy have been collected from Very Large Array (VLA) and nonlinear fitting techniques have been used in this research for different components: stars, gas and halo. Particularly, kinematic analysis of NGC 4501’s rotation curve has been carried out in this research using two different profile models: pseudo-isothermal profile and the Moore profile. The results of this study clearly showed that pseudo-isothermal model is better at reproducing the rotation curve of NGC 4501 than Moore model. The reduced chi-square, χ_"red " ^2 of pseudo-isothermal is found to be close to one whereas Moore model does not agree with observational data. This is due to the fact that the pseudo-isothermal model is characterized primarily by the linearity of its behavior within the inner region together with the flat profile at large radii. As a result, the dark matter distribution in NGC 4501 is one that may be represented by a core halo model.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ali, I. A. M., Mahdi, H. S., Zainal Abidin, Z., & Lee, D. A. A. (2025). Probing the Rotation Curve of NGC 4501 Galaxy using Two Different Models. Malaysian Journal of Science, 44(2), 63–68. https://doi.org/10.22452/mjs.vol44no2.6
Section
Original Articles

References

Ade, P. A., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., ... & Matarrese, S. (2016). Planck 2015 results-xiii. cosmological parameters. Astronomy & Astrophysics, 594, A13.

Ali, I. A. M. (2021). Testing Two Halo Models by Galactic Rotation Curve. In Journal of Physics: Conference Series (Vol. 1818, No. 1, p. 012197). IOP Publishing.

Ali, I. A. M., Hashim, N., & Abidin, Z. Z. (2018). The dark matter distribution of NGC 5921. Indian Journal of Physics 92(4): 409-415.

Babcock, H. W. (1939). The rotation of the Andromeda Nebula. Lick observatory bulletin, 19, 41-51.

Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: Evidence, candidates and constraints. Physics reports 405(5-6): 279-390.

Bevington, P. R., & Robinson, D. K. (1969). Data reduction and error analysis for the physical sciences. New York, 19692, 235.

Binggeli, B., Sandage, A., & Tammann, G. A. (1985). Studies of the Virgo Cluster. II-A catalog of 2096 galaxies in the Virgo Cluster area. The Astronomical Journal 90: 1681-1759.

Bosma, A. (1981). 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. The Astronomical Journal 86: 1825-1846.

Chung, A., Van Gorkom, J. H., Kenney, J. D., Crowl, H., & Vollmer, B. (2009). VLA imaging of virgo spirals in atomic gas (VIVA). I. The atlas and the H i properties. The Astronomical Journal 138(6): 1741.

de Blok, E., McGaugh, S., & Rubin, V. (2001). High-resolution rotation curves of LSB galaxies: Mass Models. arXiv preprint astro-ph/0107366.

de Swart, J., Bertone, G., & van Dongen, J. How dark matter came to matter. Nature Astron. 1, 0059 (2017). arXiv preprint arXiv:1703.00013.

Freeman, K. C. (1970). On the disks of spiral and S0 galaxies. The Astrophysical Journal 160: 811.

Frusciante, N., Salucci, P., Vernieri, D., Cannon, J.M. & Elson, E.C. (2012). The distribution of mass in the Orion dwarf galaxy. Monthly Notices of the Royal Astronomical Society 426(1): 751-757.

Guhathakurta, P., Van Gorkom, J. H., Kotanyi, C. G., & Balkowski, C. (1988). A VLA HI survey of the Virgo cluster spirals. II-Rotation curves. Astronomical Journal (ISSN 0004-6256), vol. 96, Sept. 1988, p. 851-866., 96, 851-866.

Hashim, N., Abidin, Z. Z., Ibrahim, U. F. S. U., Hassan, M. S. R., Hamidi, Z. S., Umar, R., & Ibrahim, Z. A. (2015). The nonlinear least square fitting for rotation curve of Orion dwarf spiral. Sains Malaysiana, 44(3), 457-462.

Jimenez, R., Verde, L., & Oh, S. P. (2003). Dark halo properties from rotation curves. Monthly Notices of the Royal Astronomical Society 339(1): 243-259.

Kahn, F. D., & Woltjer, L. (1959). Intergalactic Matter and the Galaxy. The Astrophysical Journal 130: 705.

Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. (1999). Where are the missing galactic satellites?. The Astrophysical Journal, 522(1), 82.

Mannheim, P. D. (2006). Alternatives to dark matter and dark energy. Progress in Particle and Nuclear Physics 56(2): 340-445.

Moffat, J. W., & Rahvar, S. (2013). The MOG weak field approximation and observational test of galaxy rotation curves. Monthly Notices of the Royal Astronomical Society 436(2): 1439-1451.

Möllenhoff, C., & Heidt, J. (2001). Surface photometry of spiral galaxies in NIR: structural parameters of disks and bulges. Astronomy & Astrophysics 368(1): 16-37.

Moore, B., Quinn, T., Governato, F., Stadel, J., & Lake, G. (1999). Cold collapse and the core catastrophe. Monthly Notices of the Royal Astronomical Society 310(4): 1147-1152.

Nehlig, F., Vollmer, B., & Braine, J. (2016). Effects of environmental gas compression on the multiphase ISM and star formation-The Virgo spiral galaxies NGC 4501 and NGC 4567/68. Astronomy & Astrophysics, 587, A108.

Onodera, S., Sofue, Y., Koda, J., Nakanishi, H., & Kohno, K. (2002). CO (J= 1-0) Observations of the Non-Barred Seyfert 2 Galaxy NGC 4501. In 8th Asian-Pacific Regional Meeting, Volume II (pp. 199-200).

Oort, J. H. (1927). Observational evidence confirming Lindblad's hypothesis of a rotation of the galactic system. Bulletin of the Astronomical Institutes of the Netherlands 3: 275.

Sofue, Y., & Rubin, V. (2001). Rotation curves of spiral galaxies. Annual Review of Astronomy and Astrophysics 39(1): 137-174.

Sofue, Y., Koda, J., Nakanishi, H., & Onodera, S. (2003). The virgo high-resolution CO survey: II. Rotation curves and dynamical mass distributions. Publications of the Astronomical Society of Japan, 55(1), 59-74.

Sofue, Y. (2013). The mass distribution and rotation curve in the galaxy. arXiv preprint arXiv:1307.8215.

Spergel, D. N., Bean, R., Doré, O., Nolta, M. R., Bennett, C. L., Dunkley, J., ... & Wright, E. L. (2007). Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology. The Astrophysical Journal Supplement Series 170(2): 377.

Tan, W. S., Abidin, Z. Z., & Hashim, N. (2022). A comprehensive analysis using 9 dark matter halo models on the spiral galaxy NGC 4321. Indian Journal of Physics 96(3): 671-687.

Teodoro, E. D., & Fraternali, F. (2015). 3D BAROLO: a new 3D algorithm to derive rotation curves of galaxies. Monthly Notices of the Royal Astronomical Society 451(3): 3021-3033.

Woods, D., Madore, B. F., & Fahlman, G. G. (1990). Luminosity-velocity diagrams for Virgo Cluster spirals. I-Inner rotation curves. The Astrophysical Journal, 353, 90-102.

Zwicky, F. (1933). Die rotverschiebung von extragalaktischen nebeln. Helvetica Physica Acta, Vol. 6, p. 110-127, 6, 110-127.