Carbon-Based Materials/Latex Composite from Euphorbia Tirucalli Plant for Potential Bone Fracture Treatment

Main Article Content

Supardi
https://orcid.org/0000-0002-3938-5046
Pranita Wardani
Wipsar Sunu Brams Dwandaru Dwandaru
https://orcid.org/0000-0002-9692-4640

Abstract

This study aims to investigate the preparation and characterization of carbon-based materials (CMs)/latex composites from the Euphorbia tirucalli plant for potential bone fracture treatment. The primary objectives are to: i) determine the antibacterial property of the CMs/latex composites against Staphylococcus aureus bacteria; and ii) determine the tensile strength of the CMs/latex composites via chicken bones as the model. The CMs were prepared using a simple heating method, using an oven at a temperature of 250 oC. The CMs/latex composites were prepared by mixing 3 ml of the latex and CMs solutions with concentrations of 10%, 20%, and 40% in 10 ml of distilled water. The CMs were characterized using UV-Vis, PL, and FTIR spectroscopies. The antibacterial property and tensile strength of the CMs/latex composites were tested using the diffusion method and an ultimate testing machine, respectively. The results obtained demonstrate that the CMs had absorption and emission peaks at wavelengths of 287 nm and 499 nm, respectively, resulting in cyan luminescence. The FTIR test of the CMs indicated the existence of the C=C, O-H, and N=C=S functional groups. The CMs/latex composites produced the highest diameter of inhibition zone and tensile strength of 3.24 mm and 0.02 kN, respectively. These findings concern the potential application of CMs/latex composites for bone fracture treatment with antibacterial properties.

Downloads

Download data is not yet available.

Article Details

How to Cite
Supardi, Wardani, P., & Dwandaru, W. S. B. D. (2025). Carbon-Based Materials/Latex Composite from Euphorbia Tirucalli Plant for Potential Bone Fracture Treatment. Malaysian Journal of Science, 44(2), 69–77. https://doi.org/10.22452/mjs.vol44no2.7
Section
Original Articles
Author Biography

Supardi, Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Karangmalang, Yogyakarta, 55281, INDONESIA.

Lectuter of Physics Education Department

References

Bajpai S K., D’Souza A., Suhail B. (2019). Carbon dots from Guar Gum: Synthesis, characterization and preliminary in vivo application in plant cells Mater. Sci. Eng. B. 241.

Bano D., Kumar V., Singh V K., Chandra S., Singh D K., Yadav P K., Talat M., Hasan S H. (2019). A facile and simple strategy for the synthesis of label free carbon quantum dots from the latex of Euphorbia mili and its peroxidase-mimic activity for the naked eye detection of glutathione in a human blood serum ACS Sustainable Chem. Eng. 7: 1923.

Bouiller K., David M Z. (2023). Staphylococcus aureus genomic analysis and outcomes in patients with bone and joint infections Int. J. Mol. Sci. 24(4): 3234.

da Silva R F., Carneiro C N., do C. de Sousa C B., Gomez F J V., Espino M., Boiteux J., Fernandez M A., Silva M F., Dias F S. (2022). Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review Microchem. J. 175: 107184.

de Medeiros T V., Manioudakis J., Noun F., Macairan J –R., Victoria F., Naccache R. (2019). Microwave-assisted synthesis of carbon dots and their applications J. Mater. Chem. C. 7: 7175-7195.

Dong X., Awak M A., Tomlinson N., Tang Y., Sun Y –P., Yang L. (2017). Antibacterial effects of carbon dots in combination with other antimicrobial reagents PloS One 12: e0185324.

Dwandaru W S B., Bilqis S M., Wisnuwijaya R I., Isnaeni (2019). Optical properties comparison of carbon nanodots synthesized from commercial granulated sugar using hydrothermal method and microwave Mater. Res. Express. 6: 105041.

Dwandaru W S B., Fadli A L., Sari E K., Isnaeni (2020). Cdots and Cdots/S synthesis from nam-nam fruit (Cynometra cauliflora l.) via frying method using cooking oil Dig. J. Nanomater. Biostructures. 15: 555.

Dwandaru W S B., Sari E K. (2020). Chicken bone wastes as precursor for C-dots in olive oil J. Phys. Sci. 31: 113.

Ghosh T., Das T K., Das P., Banerji P., Das N Ch. (2022). Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013–2022) Carbon Lett. (2022).

Gracz-Bernaciak J., Mazur O., Nawrot R. (2021). Functional studies of plant Latex as a rich source of bioactive compounds: focus on proteins and alkaloids Int. J. Mol. Sci. 22(22): 1242.

Kaur P., Verma G. (2022). Converting fruit waste into carbon dots for bioimaging applications Mater. Today Sustain. 18: 100137.

Khajuria D K., Kumar V B., Gigi D., Gedanken A., Karasik D. (2018). Accelerated bone regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite nanoparticles ACS Appl. Mater. Interfaces. 10: 19373.

Khemthong P., Phanthasri J., Youngjan S., Wanmolee W., Samun Y., Sosa N., Rungnim C., Kraithong W., Sangkhun W., Panthong J., Butburee T, Thanee K., Nakajima H., Supruangnet R., Towiwat P., Chanvorachote P., Sukrong S. (2023). Effect of the ethanol-to-water ratio on the properties of silica-carbon core-shell materials for prolonged antibacterial activity of thymol Applied Surface Science 635: 157716.

Li J., Leung S S Y., Chung Y L., Chow S K H., Alt V., Rupp M., Brochhause C., Chui C S., Ip M., Cheung W-H., Wong R M Y. (2023). Hydrogel delivery of DNase I and liposomal vancomycin to eradicate fracture-related ethicillin-resistant staphylococcus aureus infection and support osteoporotic fracture healing Acta Biomaterialia 164: 223.

Li L., Zhang R., Lu C., Sun J., Wang L., Qu B., Li T., Liu Y., Li S. (2017). In situ synthesis of NIR-Light emission carbon dots derived from spinach for bio-imaging application J. Mater. Chem. B. 5: 7328.

Liu J., Li R., Yang B. (2020). Carbon dots: a new type of carbon-based nanomaterial with wide applications ACS Cent. Sci. 12: 2179.

Liu X., Pang J., Xu F., Zhang X. (2016). Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan Sci. Rep. 6: 31100.

Mali P Y., Panchal S S. (2017). Euphorbia tirucalli L.: Review on morphology, medicinal uses, phytochemistry and pharmacological activities Asian Pac. J. Trop. Med. 7: 603.

Maver T., Maver U., Kleinschek K S., Smrke D M., Kreft S. (2015). A review of herbal medicines in wound healing Int. J. Dermatol. 54: 740-751.

Mewada A., Vishwakarma R., Patil B., Phadke C., Kalita G., Sharon M., Sharon M. (2015). Non-blinking dendritic crystals from C-dot solution Carbon Lett. 16: 211.

Muktha H., Sharath R., Kottam N., Smrithi S P., Samrat K., Ankitha P. (2020). Green synthesis of carbon dots and evaluation of its pharmacological activities BioNanoSci. 10: 731.

Pallavali R R., Avula S., Degati V L., Penubala M., Damu A G., Durbaka V R P. (2019). Data of antibacterial activity of plant leaves crude extract on bacterial isolates of wound infections Data in Brief 24: 103896.

Pires N R., Santos C M W., Sousa R R., de Paula R C M., Cunha P L R., Feitosa J P A. (2015). Novel and fast microwave-assisted synthesis of carbon quantum dots from raw cashew gum J. Braz. Chem. Soc. 26: 1274.

Rahmani Z., Ghaemy M. (2019). One-step hydrothermal-assisted synthesis of highly fluorescent N-doped carbon dots from gum tragacanth: luminescent stability and sensitive probe for Au3+ ions Opt. Mater. 97.

Sabzehmeidani M M., Mahnaee S., Ghaedi M., Heidari H., Roy V A L. (2021). Carbon based materials: a review of adsorbents for inorganic and organic compounds Mater. Adv. 2: 598.

Shao D., Lu M., Xu D., Zheng X., Pan Y., Song Y., Xu J., Li M., Zhang M., Li J., Chi G., Chen L., Yang B. (2017). Carbon dots for tracking and promoting osteogenic differentiation of mesenchymal stem cells Biomater. Sci. 5: 1820.

Sreenath P R., Mandal S., Panigrahi H., Das P., Kumar K D. (2020). Carbon dots: fluorescence active, covalently conjugated and strong reinforcing nanofiller for polymer latex Nano-Struct. Nano-Objects. 23: 100477.

Thakur M., Pandey S., Mewada A., Patil V., Khade M., Goshi E., Sharon M. (2014). Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity J. Drug Deliv. 2014.

Wang P., Song Y., Mei Q., Dong W-F., Li L. (2022). Silver nanoparticles@carbon dots for synergistic antibacterial activity Applied Surface Science 600: 154125.

Wang Y H., Hu A. (2017). Carbon quantum dots: synthesis, properties and applications J. Mater. Chem. C. 2: 6921.

Weber K., Quicker P. (2018). Properties of biochar Fuel 217: 240.

Xia C., Zhu S., Feng T., Yang M., Yang B. (2019). Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots Adv. Sci. 6: 1901316.

Xin Q., Shah H., Nawaz A., Xie W., Akram M Z., Batool A., Tian L., Jan S U., Boddula R., Guo B., Liu Q., Gong J R. (2018). Antibacterial carbon-based nanomaterials Adv. Mater. 2018: 1-15.

Zhai X., Zhang P., Liu C., Bai T., Li W., Dai L., Liu W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis Chem. Commun. 48: 7955.